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In parts made from materials with a distinct anisotropy, it is necessary to take 
into account edge effects which, as is well known [i], can slowly decay away 
from the edge. The size of the edge-effect zone in composite materials has been 
estimated many times and, in addition, the problem has been solved theoretically 
and experimentally [1-3]. In this work such estimates are made with the help of 
the method of holographic interferometry. 

The edge effect is estimated by the distance ~* at which the initial perturbation of 
the deformed state of the sample drops to 5% of its maximum value. The deformation decays 
nearly exponentially and for large values of the argument of the exponential approaches zero 
asymptotically. Then, in this zone of the sample, in order to obtain a concrete value for 
~* the values of the displacements must be known with high accuracy. For example, in order 
to achieve an error ~* = 5%, the displacements must be measured with an accuracy of 0.7%. 
The required measurement accuracy can be substantially reduced if it is assumed that the 
displacements decrease exponentially. Then, by constructing curves of the displacements 
in fixed sections of the sample, for example with the help of the method of holographic inter- 
ferometry, the decay constant T can be determined as the distance at which the magnitude 
of the perturbation decreases by a factor of e, and the zone of penetration of the edge ef- 
fect can be taken, as done in the description of transient processes, as ~* = 3T. Since 

is determined in the zone of the sample where the displacements are substantial~ the mea- 
surement accuracy can be reduced. 

As an example of the approach described above for determining the size of the edge-effect 
zone in composite materials we present the results of tests on a sample consisting of a 
matrix of ,epoxy resin, reinforced with steel wire 2 mm in diameter. A self-balanced load 
was applied with the help of a special setup to the fibers protruding from the matrix [4]. 
The loading scheme is shown in Fig. i. The sample was 210 mm long, 65 mm wide, and 5 mm 
thick, and distance between the axes of the reinforcing fibers equalled 4.7 mm. 

The test were performed by the method of holographic moire [5]. For this, a metallized 
grating with a spacing of P = 1355 mm -l was deposited on the surface of the sample (the work 
required to produce the metallized grating and to deposit it on the surface of the part is 
no greater than the work required to produce and glue on photoelastic coatings). Then a 
PE-2 high-resolution photographic plate, on which a hologram was recorded by the double-ex- 
posure method proposed by Yu. N. Denisyuk, was fastened in front of the grating with SKTN 
synthetic rubber. The first exposure was made in the initial unloaded state of the sample, 
and the second was made after the load was applied. After the second exposure the plate was 
separated from the sample and treated photochemically. 

i X~, 
Fig. 1 
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Fig. 2 
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Fig. 3 

The interferograms obtained were reconstructed in white light. Figure 2 shows photo- 
graphs of the interferograms observed in reflected +i (a) and -i (b) orders of diffraction. 
The position of the interference fringes is determined by the displacement of identical points 
of the sample between exposures and is determined by the equation 

u s in  ~ + w(t  + cos ~) = N~,' 

where sin ~ = n~; n is the number of the diffusion order; u and w are the components of 
the displacement vector tangential and normal to the plane of the sample; N is the order 
of the fringe; and X is the wavelength of the light. If N + and N- are the numbers of the 
fringes in the +i and -I orders of diffraction, then taking into account the fact that 
sin~+ = -sin~- and. cos ~+ = cos ~-, the displacement in the plane of the sample can be cal- 
culated according to the formula 

u=(N+_N :) ~ - - = ( N §  
2 sill cZ 
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Figure 3 shows the curves of u on a logarithmic scale in two longitudinal sections of 
maximal stretching of the sample and in the compressed section at the center (curves 1-3). 
The curves have two distinct sections. These sections can be interpreted as follows. In 
the first section, the magnitude of the displacements produced by the edge effect, caused 
by the nonuniformity of the load distribution over the thickness of the sample, increases. 
In this case, the displacements can be described by the expression 

U =  Urea i ( ] - e  - x / ~ l ) ,  

where x is the coordinate along the axis of the sample (see Fig. i) and ~i is the damping 
constant for the transverse edge effect. Because the depth at which the reinforcing fibers 
are located is not constant, the value of ~i is different and fluctuates from 0.4 cm for 
the compressed section to 0.7 cm for the stretched section. 

In the second section the displacement u decreases because the perturbation produced 
by the self-balanced load applied to the sample decays, and is described by the expression 

where  ~2 i s  t h e  damping  c o n s t a n t  o f  t h e  m a i n  edge  e f f e c t ;  ~2 = 2 .26  and 2 .17  cm f o r  t h e  s t r e t c h e d  
and c o m p r e s s e d  r e g i o n s ,  r e s p e c t i v e l y .  The p e n e t r a t i o n  d e p t h  o f  t h e  edge  e f f e c t ,  d e t e r m i n e d  
by t h e  f o r m u l a  ~* = 3~, e q u a l s  6 .78  and 6 .52  cm in  t h e  r e g i o n  o f  s t r e t c h i n g  and in  t h e  com- 
p r e s s e d  zone ,  r e s p e c t i v e l y .  

I n  [1] t h e  f o r m u l a  ~*/H = 1 + 0 .04q  f o r  d e t e r m i n i n g  t h e  p e n e t r a t i o n  d e p t h  o f  t h e  edge  
e f f e c t  was d e r i v e d  t h e o r e t i c a l l y  and c h e c k e d  e x p e r i m e n t a l l y .  H e r e ,  H i s  t h e  s i z e  o f  t h e  
p e r t u r b a t i o n  zone  ( i n  o u r  c a s e ,  e q u a l  t o  o n e - h a l f  t h e  w i d t h  o f  t h e  s a m p l e ,  i . e . ,  3 .25  cm),  
and q i s  t h e  a n i s o t r o p y  p a r a m e t e r ,  d e t e r m i n e d  by t h e  r e l a t i o n  

~1 = E1F1/(Gha)~ 

where E i and F I is Young's modulus and the area of the transverse cross section of the rein- 
forcing fiber, G is the shear modulus of the binder, h is the thickness of the sample, and a 
is the distance between the centers of the reinforcing fibers. For the sample described, 
q = 23, i.e., the theoretical size of the zone of penetration of the edge effect equals 6.24 
cm, which is 8% smaller than the value obtained experimentally for the stretched zone and 
4% less for the compressed zone. 

Thus, evaluation of the penetration depth of the edge effect based on the decay constant 
reduces the accuracy required in determining the displacements, and the size of the edge-effect 
zone obtained by this method is virtually identical to the size obtained by other methods. 
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